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J .  P H Y S .  A ( P R O C .  PHYS. S O C . ) ,  1968 ,  S E R .  2 ,  V O L .  1 .  P R I N T E D  I N  G R E A T  B R I T A I N  

Classical motion of an electron in an electric-dipole field 
11. Point dipole case? 

K. FOX: 
Physics Department, The  University of Tennessee, Knoxville, and Oak Ridge 
National Laboratory, Oak Ridge, Tennessee, U. S.A. 
MS.  receiced 11 t h  September 1967 

Abstract. The classical motion of an electron in the field of a point electric dipole is 
analysed. I t  is shown that the only motion for which the distance Y from the dipole to 
the electron does not either increase without limit or decrease to and remain at zero 
is that for which Y is constant and the total energy E is zero. A necessary condition for 
such bound motion is D > 3 1/3pez/4me, where D is the dipole moment, po is the 
component of angular momentum along the dipole axis, and m and e are the electronic 
mass and charge. It follows that any point dipole can bind an electron classically. 

1. Introduction 
Recently the classical motion of an electron in the field of a j n i t e  electric dipole was 

investigated, especially with a view towards understanding the bound states of the system 
(Turner and Fox 1965, 1968). In  the present work we give a detailed solution for the 
classical motion of an electron in a point electric-dipole field. This problem is of intrinsic 
interest in classical dynamics. Furthermore, we may obtain some insight into the meaning 
of bound states in the quantum-mechanical problem (Wallis et al. 1960, Fox and Turner 
1966 a, b, Mittleman and Myerscough 1966, Turner and Fox 1966, LCvy-Leblond 1967, 
Brown and Roberts 1967, Crawford and Dalgarno 1967, Coulson and Walmsley 1967, 
Crawford 1967, Fox 1967). 

2. Lagrange’s equations 
The dipole of moment D is oriented along the x axis, is centred at the origin, and has its 

positive pole in the upper hemisphere. The potential energy of an electron moving in the 
field of this dipole is V = - eDr-2 cos 8; Y, 8, and #I are the spherical polar coordinates, and 
e and m are the electronic charge and mass. (V may be thought of as the limit of the potential 
energy of an electron moving in the field of a finite dipole, oriented as described in the first 
sentence, as the extent of the dipole goes to zero with the product of extent and dipole 
charge remaining finite.) 

The  Lagrangian for this system is 

L = T - V =  ~ m ( P 2 + r 2 $ 2 + r 2 s i n 2 8 Y j 2 ) + e D r - 2 ~ ~ ~ 8 .  (1) 
Lagrange’s equations of motion are 

d(mi) 
-- ( m d 2  + my sin2 8 Yj2 - 2eD+ cos 8) = 0 

dt 
d(mr28) 
___- (my2 sin 8 cos 8 Yj2 - eDrW2 sin 8) = 0 

dt (3) 

d(mr2 sin2 8 6) 
dt = 0. (4) 

Equation (4) yields a constant of the motion p, = my2 sin2 8 4, the component of angular 
1- Research sponsored in part by the U.S. Atomic Energy Commission under contract with Union 
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momentum along the dipole axis. Since the force is non-central, the total angular momen- 
tum is not a constant of the motion. The  constant energy is 

E = T+V = &m(i2+r282+r2sin2 042)-eDr-2 cos0. (3 
That dE/dt = 0 may be verified directly from Lagrange’s equations. 

twice equation ( 5 )  to obtain 

(In a similar way, the radial equation (6) is obtained for any potential of the 
form V = f(0, +) /r2 . )  This is integrated easily to give 

T o  solve the dynamical problem, we first multiply equation (2) by Y and add that to 

m(ri:+i2) = 2E. (6) 

and 

i ( t )  = 

r ( t )  = 

where ro  = r(0) and so = i (0 ) .  

velocity vo.  
Next, we analyse r(t) and i ( t )  

( 7 )  

for all possible ranges of energy E and initial radial 

3. Analysis of the motion 
3.1. Case 1. E < 0. 

(i) v o  < 0. From equation ( 7 )  it follows that 1: < 0 for all time. Thus r decreases to 
zero at time t = (&mrovo/E){(l - E/&m7;02)1’2- l } ,  determined from equation (8). There 
+ + - C O .  

(ii) v o  > 0. There is a turning point of the motion which occurs at t = -&mrovo/E. 
At that time r = r,(l - &mvo2/E)1’2. After the electron reaches the turning point it heads 
back towards the dipole and reaches the origin at t = ( - &mrovo/E){l + ( 1  - E/&mv,2)1/2}. 
There 1: -+ - CO. 

(iii) v o  = 0. Thus r decreases to zero at t = yo (  -2E/m)-1’2. There i -+ - CO. 

T o  summarize for E < 0: No matter what the initial conditions, the electron eventually 
goes to and remains at r = 0 with 1; -+ - CO. That this result occurs for any value ofp, can 
be understood by assuming @ -+ CO as Y --f 0. In  contrast, for the l / r  potential the result 
Y -+ 0 and i -+ - CO occurs only for p ,  = 0. The  present result for the l / r 2  dependence is 
analogous to the quantum-mechanical case of a sufficiently attractive 1 / r2  potential, in 
which the particle is in an infinitesimally small region about Y = 0, corresponding to 
E -+ - CO (the phenomenon of ‘fall to the centre’ described by Landau and Lifshitz 
(1965)). 
3.2. Case 2. E > 0. 

However, we can also calculate that the electron reaches Y = 0 at 
(i) no < 0. There is a turning point at t = -$mr,v,/E; Y = r,(l  -&mvo2/E)1/2. 

We must distinguish between the possibilities E > , < , or = +r”2. 

1; > 0, and Y -+ + CO and i -+ (2E/m)1’2. 
(a) E > $mvoz. The electron reaches the turning point at Y > 0. Afterwards 

(b )  E < +nvO2. The electron reaches the origin. There + -+ - CO. 

(c) E = $muoz. The electron reaches the origin. There 1: = v o  (actually i = vug for 

(ii) v o  > 0. From equation (7), i > 0 for all time. The  electron travels outward with 
all t ) ,  or i = - (2E/m)1/2. The  electron does not turn back from the origin. 

I“ -+ + CO monotonically; i -+ (2E/m)ll2. 
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(iii) vo = 0. Theelectrontravelsoutwardwithr -+ + CO monotonically; 1: --f (2E/m)lI2. 
T o  summarize for E > 0;  depending on the initial conditions, the electron either goes 

to the origin and remains there with 1: + - CO or 1: -+ -(2E/m)1/2, or it goes to + CO with 
1: = (2E/m)1'2. 
3.3. Case 3. E = 0. 

(i) vo < 0. From equation (7) ,  1' < 0 for all time. Equation (8) implies that Y goes 
monotonically to zero in a time t = -&ro/v0. There 1: -+ - CO. 

(ii) vo > 0. Here 1: > 0 for all time; Y goes monotonically to + CO, and 1: -+ 0. 
(iii) so = 0. I n  this case Y = y o  and + = 0 for all time. Thus the electron moves on a 

sphere of radius y o ,  with centre at the origin where the point dipole is located. We treat 
this case in detail in the next section. 

4. Bound states 
The only instance of physically reasonable bound-state motion has been shown to take 

place for E = vo = 0, leading to r = y o  = constant. We now analyse the angular motion 
on the sphere. 

From equation ( 5 )  with E = 0, 1' = 0, and p ,  = my2 sin2 6 4 ,  we obtain 

9mr2e2 +pd2(2mr2 sin2 - eDr-2 cos 6 = 0. (9) 
With the substitution x = cos 6,  equation (9) can be rewritten in the form 

where 
2 = 2eD(mr4)-I( - x3 + x - k) 

k = &p,2(meD)-1. 

Since increasing 6 corresponds to decreasing x ,  we take the negative square root of equation 
(10) to obtain 

my4 112 x 
t = / l d t  = -(--) j dx(-x3+x-k)112. (12) 

I o  

Although equation (12) involves an elliptic integral, it is nevertheless possible in principle 
to obtain x( t ) .  

Thus one can obtain 6( t ) ,  and from p ,  = my2 sin2 0 6 is follows that 

The dynamics of the bound-state motion has been reduced to quadratures. It is still interest- 
ing to examine equation (12) for the 6 motion in detail. 

I n  order for real solutions to exist, the polynomial y (x )  = - x3 + x - k must be positive 
for some x in the interval from - 1 to + 1. Now y (  + CO) = - CO, y (  - C O )  = + CO and 
y(0)  = . y ( l l )  = - K  < 0. The extrema of y (x )  occur at x = k 1 / 2 / 3 .  The minimum 
value is y ( - l / d 3 )  = -k-2/32/3; the maximum value is y ( + l / d 3 )  = -k+2/32/3. 
Clearly y ( x )  is negative for - 1 < x < 0. In  order for y (x )  to be positive in some interval of 
0 < x < 1, the maximum must be positive, i.e. K < 2 /343 .  This situation is shown in 
figure 1,  for k = 0.3. 

From the definition, equation ( l l ) ,  the condition on k can be expressed as 

3 d 3 P 2  D>-. 
4me 

Once p ,  is specified by the initial conditions, equation (14) is a strong condition requiring a 
minimum dipole moment for binding. Of course, for p ,  = 0 any non-zero dipole moment 
will satisfy the condition. Turning the argument around, we may say that for a given dipole 
moment it is always possible to achieve bound-state motion, since initial conditions can 
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always be chosen so that equation (14) is satisfied. This is true for the finite-dipole problem 
also (Turner and Fox 1965, 1968). (If p ,  is quantized in an appropriate way, equation (14) 
yields the minimum dipole moments required for binding in the ground state and in 
certain excited states of the quantum-mechanical motion of an electron about a finite or 
point dipole (Fox 1967).) 

t-' 
Figure 1. A plot of the function y(x) = -x3 +x - k ,  for k = 0.3. 

The  turning points in the 0 motion are given by 6 = 0, or x = 0. T h e  roots of the 
polynomial y(x) = - - x 3 + x - k  occur for 0 < x < 1, as indicated in figure 1. Thus the 
electron moves only in the upper hemisphere, as in the classical finite-dipole problem. 
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